
LowCon: A Design-based Subsampling Approach in a Misspecified Linear Model
Source:R/LowCon.R
LowCon.Rd
A subsampling method based space-filling design for misspecified linear model proposed by Meng et.al. (2021).
Arguments
- X
A data.frame or matrix of explanatory variables.
- n
Subsample size.
- theta
Percentage of data shrinkage. Default to 1.
- space_method
The generation method of initial space-filling design.
- seed
Random seed for the sampling.
References
Cheng Meng, Rui Xie, Abhyuday Mandal, Xinlian Zhang, Wenxuan Zhong & Ping Ma (2021) LowCon: A Design-based Subsampling Approach in a Misspecified Linear Model, Journal of Computational and Graphical Statistics, 30:3, 694-708, https://www.tandfonline.com/doi/full/10.1080/10618600.2020.1844215.
Examples
data <- data_numeric_regression
X <- data[-which(names(data) == "y")]
LowCon(X, n = 100, space_method = "randomLHS", theta = 1, seed = NULL)
#> [1] 6210 7368 7559 5199 5116 445 8331 1262 704 7416 9560 5289 2345 5992 7002
#> [16] 5072 8578 9090 4328 2938 1161 4703 1026 3912 7409 2574 3183 3551 1591 3931
#> [31] 9536 6006 1186 2198 741 7594 7359 2211 2397 5523 4696 6114 3162 9337 1839
#> [46] 5589 6148 6677 9027 3129 4101 4983 1456 1038 2456 3545 9164 830 3246 5825
#> [61] 8444 6591 9594 1804 2831 9529 9661 138 8257 7237 5488 5560 6992 2875 1667
#> [76] 5221 334 30 2206 1830 658 8944 5831 5564 9904 2334 9096 690 4612 2434
#> [91] 9902 3175 1794 7053 9472 9017 3226 3444 260 7073